Statistics


A Module based on Statistics.


Documentation

  • Finding A Moment

    >>> pysiclib.stats.find_moment( ... input_tensor, target_dim, moment_num, ... is_central, is_standardized)

    Example:

    >>> import pysiclib >>> #Take in columns vectors as rows and transpose >>> input_tensor = pysiclib.linalg.Tensor( ... [[0, 1, 2],[ 3, 4, 5]]).tranpose() >>> print(input_tensor) Tensor: [[0, 3] [1, 4] [2, 5]] Tensor Shape: [3, 2] >>> # The Mean is the first Moment centered at 0 >>> mean_tensor = pysiclib.stats.find_moment( ... input_tensor, 0, 1, False, False) >>> print(mean_tensor) Tensor: [[1, 4]] Tensor Shape: [1, 2]

    Moment Convenience functions

    • Mean
    >>> pysiclib.stats.find_mean(input_tensor, target_dim)
    • Variance
    >>> pysiclib.stats.find_variance(input_tensor, target_dim)
    • Standard Deviation
    >>> pysiclib.stats.find_stddev(input_tensor, target_dim)
    • Skew
    >>> pysiclib.stats.find_skew(input_tensor, target_dim)
    • Kurtosis
    >>> pysiclib.stats.find_kurtosis(input_tensor, target_dim)